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The selection of stable wavebands for the near-infrared (NIR) spectroscopic analysis of total
nitrogen (TN) in soil was accomplished by using an improved moving window partial least
squares (MWPLS) method. A new modeling approach was performed based on randomness,
similarity and stability, which produced an objective, stable and practical model. Based on the
MWPLS method, a search was in the overall scanning region from 400 to 2498 nm, and the
optimal waveband was identi¯ed to be 1424 to 2282 nm. A model space that includes 41 wave-
bands that are equivalent to the optimal waveband was then proposed. The public range of the 41
equivalent optimal wavebands was 1590 to 1870 nm, which contained su±cient TN information.
The wavebands of 1424 to 2282 nm, 1590 to 1870 nm, and the long-NIR region 1100 to 2498 nm
all achieved satisfactory validation e®ects. However, the public waveband of 1590 to 1870 nm had
only a minimum number of wavelengths, which signi¯cantly reduced the method complexity.
Various equivalent wavebands serve as guidelines for designing spectroscopic instruments. These
wavebands could address the restrictions of position and the number of wavelengths in instru-
ment design.
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1. Introduction

Total nitrogen (TN) is the main component of soil
and is a crucial monitoring indicator for an agri-
cultural ecological environment. Standard methods
for measuring TN in soil cannot be conducted easily.
In addition, these methods consume chemical re-
agents and cause environmental pollution. There-
fore, a rapid, chemical-free measurement method for
soil TN is of great signi¯cance. Near-infrared (NIR)
spectroscopy has been proven to be a powerful
analytical tool for use in agriculture,1 food,2 en-
vironment,3 medicine,4 and so on.5 The establish-
ment of a rapid, chemical-free measurement for soil
components based on NIR spectroscopy has been a
signi¯cant research direction in recent years.6–8

Given that soil is a complex system with multiple
components, the spectroscopic analysis of major soil
components has to mitigate noise disturbance. In
addition, appropriate wavelength selection and
stability are two key objectives. Model stability was
not discussed in detail by previous studies because
of the need for numerous experiments. Partial least
squares (PLS) was widely used for NIR analysis.9,10

However, according to results from several exper-
iments, waveband selection for the PLS model is
necessary because the prediction e®ect cannot
improve with insu±cient signal-to-noise ratio in the
waveband. TN refers to the sum of organic nitrogen
and inorganic nitrogen in soil. Previous studies
reported on the information wavebands in the NIR
region of nitrogen-based groups.9,10 However, the
NIR spectra of soil indicate the absorbance infor-
mation of all components. The absorption band of
the above functional group cannot be simply taken
as the waveband for analysis of TN in soil because of
the interference of other components. Therefore,
waveband selection has to be based on the model
prediction e®ect by using an appropriate chemo-
metrics method. In this research, the moving win-
dow partial least squares (MWPLS) method11–13

was improved in terms of stability and equivalence.
The appropriate waveband for the chemical-free
measurement of TN in soil was selected.

An objective and rational evaluation method is
essential to spectroscopy analysis. Several exper-
imental results indicate that di®erences in the div-
isions of calibration and prediction sets could result
in °uctuations in the prediction and in the model
parameters, thereby producing unstable results. On
the other hand, the random selection of samples for

the validation set is reasonable. However, con-
tingencies attributed to random divisions for the
calibration and prediction sets may cause the mod-
eling process to appear distorted. For example, a
randomly generated calibration set comprises with
low TN measured values, whereas the prediction set
comprises samples with high TN measured values.
Improving the prediction e®ect under such con-
ditions is di±cult and often produces incorrect
models. To avoid the evaluation distortion of the
model, the calibration and prediction sets need to be
divided based on certain similarities in the modeling
optimization process. In this paper, a new modeling
approach was performed based on randomness,
similarity and stability, which produced an objec-
tive, stable and practical model.

2. Materials and Methods

2.1. Soil sampling

Leafy vegetables are the main vegetable cultivation
species of Pearl River Delta of China. Nitrogen
testing of soil in themajor vegetable production areas
is very important for reasonable fertilization and
e®ective yield. A total of 163 samples of the farmland
soil (yellow brown earth) were collected from several
leafy vegetables ¯elds of the major vegetable pro-
duction areas located in Pearl River Delta. Sampling
points were arranged uniformly about 5 to 6 in each
acre ¯eld. Soil samples were collected in representa-
tive topsoil (0–20 cm) of each sampling point. The
samples were ground after drying, and then were
sifted by using a 0.25-mm soil sifter. The TN content
of each sample was measured by using the Kjeldahl
method, a standard soil analysis method. The
measured values were used for the calibration and
validation of spectroscopic analysis. The TN in all
samples ranged from 0.60 to 1.78 g kg�1, and the
mean values and the standard deviations were 1.178
and 0.220 g kg�1, respectively.

2.2. Experimental instruments and

measurement methods

The spectroscopy instrument used was an XDS
Rapid ContentTM Grating Spectrometer (FOSS,
Danmark) equipped with a di®use re°ection acces-
sory and a round sample cell. The scanning scope of
the spectrum spanned 400 to 2498 nm with a 2-nm
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wavelength interval, including the overall NIR
region and a large part of the visible region.
Wavebands of 400 to 1100 nm and 1100 to 2498 nm
were adopted for Si and PbS detection, respectively.
The same soil sample was repeated to collect spectra
thrice, and the mean value of the three measure-
ments was used for modeling. The spectra were
measured at 25�C� 1�C and 46%� 1% RH.

2.3. Sample set division and model
optimization frame

First, 60 samples were randomly selected from a total
of 163 samples as the validation set. The remaining
103 samples were used as the modeling set. The
modeling set was divided into similar calibration
(60 samples) and prediction (43 samples) sets for a
total of 50 times. The mean value and the standard
deviation of the root mean square error and the
correlation coe±cients for all divisions were denoted
by M-SEPAve, M-RP;Ave, M-SEPStd and M-RP;Std.
These values served as the basis for the discussion
on prediction accuracy and stability; M-SEPþ ¼
M-SEPAve þM-SEPStd was a comprehensive indi-
cator of prediction accuracy and stability. A smaller
M-SEPþ indicates higher accuracy and stability.
Model parameters (such as waveband and PLS
factor) were selected according to the minimum
M-SEPAve or M-SEPþ. Finally, the selected model
was re-validated against the validation set. The
randomly selected validation samples, which were
not subjected to the modeling optimization process,
were regarded as the prediction set while the original
modeling set was used as calibration set. The vali-
dation root mean square error and validation corre-
lation coe±cients of prediction were then calculated
and denoted by V-SEP and V-RP, respectively.

The two sets could be considered similar when the
TN's mean value and the standard deviation of the
calibration set were close to those of the prediction
set. All modeling samples were randomly divided into
calibration and prediction sets for a su±cient number
of times. The mean value and standard deviation of
the TN of the calibration, prediction and whole
modeling sets were denoted by TNC;Ave, TNC;Std,
TNP;Ave, TNP;Std, TNAve and TNStd, respectively.
The similarity degree was de¯ned by the following:

a0 ¼max
jTNC;Ave �TNP;Avej

TNAve

;
jTNC;Std �TNP;Stdj

TNStd

� �
� 100%:

ð1Þ

Improved similarity was achieved with smaller a0. In
this paper, 50 divisions that satisfy a0 <10% were
retained for modeling.

2.4. Optimization frame of the MWPLS

method

The parameters of the MWPLS method were as
follows: (1) beginning wavelength and its serial
number (B), (2) number of wavelengths (N) and (3)
PLS factor (F ).14,15 The range of parameters B, N ,
F were denoted by B, N , F , respectively, which can
be set according to the actual situation; the par-
ameter space B �N �F is shown in Fig. 1. The
PLS models were established for all combinations
(B;N ;F ). The corresponding M-SEPAve, M-RP;Ave,
M-SEPStd, M-RP;Std and M-SEPþ were then calcu-
lated and matched to a cube of the parameter space.

Stability of PLS factor : PLS can comprehensively
screen the spectroscopic data and can extract in-
formation variables. The PLS factor F is a major
parameter that corresponds to the number of spec-
tral integrated variables on behalf of the sample
information. The selection of a reasonable F is both
necessary and di±cult.16,17 In this paper, F was
selected by considering the number of divisions for
the calibration and the prediction sets. Thus, the

Fig. 1. Schematic of the parameter space B �N � F .
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optimized PLS factor exhibited stability and prac-
ticality. Any waveband corresponded to a unique
combination of parameters (B;NÞ ¼ ðB0;N0); the
optimal PLS model of the waveband was selected
according to the following:

M-SEPAveðB0;N0Þ
¼ min

F2F
M-SEPAveðB0;N0;F Þ; ð2Þ

the corresponding optimal F was denoted by FB0;N0
;

M-SEPAveðB0;N0Þ was a minimum projection
of M-SEPAveðB0;N0;F Þ in the plane B-N ; and the
M-RP;Ave, M-SEPStd, M-RP;Std and M-SEPþ of ðB0;
N0;FB0;N0

Þ were also determined.
Global optimal model: The global optimal model

was selected according to the following:

M-SEP�
Ave ¼ min

B2B
N2N
F2F

M-SEPAveðB;N ;F Þ: ð3Þ

The corresponding parameters were denoted byB�,
N � and F �, respectively, and the corresponding
M-RP;Ave, M-SEPStd, M-RP;Std and M-SEPþ were
determined.

Local optimal model: Instrument design typically
involves some restrictions of position and number of
wavelengths (such as costs and material properties).
In some instances, the demand of actual conditions
cannot be met by the global optimal waveband.
Therefore, local optimal wavebands that correspond
to di®erent positions and number of wavelengths
are signi¯cant. For any ¯xed B ¼ B0, the local op-
timal model was selected according to the following:

M-SEPAveðB0Þ ¼ min
N2N
F2F

M-SEPAveðB0;N;F Þ; ð4Þ

the corresponding optimalN and F were denoted by
NB0

and FB0
, respectively; and the M-SEPAveðB0Þ

was a minimum projection of M-SEPAveðB0;N ;F Þ
on the B-axis. The M-RP;Ave, M-SEPStd, M-RP;Std

and M-SEPþ of ðB0;NB0
;FB0

Þ were also deter-
mined. Meanwhile, for any ¯xed N ¼ N0, the local
optimal model was selected according to the
following:

M-SEPAveðN0Þ ¼ min
B2B
F2F

M-SEPAveðB;N0;F Þ; ð5Þ

the corresponding optimal B and F were also
denoted by BN0

and FN0
, respectively; and the

M-SEPAveðN0Þ was a minimum projection of

M-SEPAveðB;N0;F Þ on the N-axis. M-SEPStd,
M-RP;Std and M-SEPþ of ðBN0

;N0;FN0
Þ were also

determined.
The search range for the MWPLS method in this

paper spanned the overall scanning region of 400 to
2498 nm with 1050 wavelengths. To reduce work-
load and to maintain representativeness, B, N , F
were set as follows:

B ¼ f1; 2; . . . ; 1050g;
N ¼ f1; 2; . . . ; 100g [ f102; 104; . . . ; 250g

[f260; 270; . . . ; 1050g;
F ¼ f1; 2; . . . ; 20g: ð6Þ

Consequently, the total number of wavebands was
197,355. The computer platform was built by using
MATLAB 7.6 software.

3. Results and Discussion

3.1. Relationship between prediction

e®ect and similarity of sample set

The VIS-NIR spectra of the 163 soil samples are
shown in Fig. 2. To verify the relationship between
the prediction e®ect and the similarity of the sample
set, an experiment was conducted. First, the mod-
eling set (103 samples) was divided randomly into
calibration (60 samples) and prediction (43
samples) sets for a total of 1500 times; the PLS
models were established for all 1500 divisions. The
1500 divisions were arranged according to their
similarity degree from small to large and were then
divided into seven division groups; the range of the
similarity degree of the seven groups were below 1%,

Fig. 2. Visible and NIR spectra of the 163 soil samples.
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from 1% to 2%, from 2% to 3%, from 3% to 4%,
from 4% to 5%, from 5% to 6% and above 6%. For
each division group, the average similarity degree
aðjÞ and the average prediction e®ects M-SEP

ðjÞ
Ave

were calculated, j ¼ 1; 2; . . . ; 7. As shown in Fig. 3,
M-SEP

ðjÞ
Ave increases, that is, the prediction e®ect of

models falls, as similarity decreases (and aðjÞ
increases). Therefore, the division for calibration
and prediction sets has to be performed based on
certain similarities in the modeling optimization
process to prevent the evaluation distortion of the
model.

3.2. Comparison among the visible,

short-NIR, long-NIR and overall
scanning regions

The overall scanning region was separated into the
visible region (400 to 780 nm), the short-NIR region
(780 to 1100 nm) and the long-NIR region (1100 to
2498 nm). PLS models were established in all
regions including the overall scanning region, and
the results are summarized in Table 1. Table 1
shows that M-SEPAve and M-SEPþ of the long-NIR

region were both signi¯cantly better than those of
the other three wavebands. Thus, the long-NIR
region had the best prediction accuracy and stab-
ility among all four wavebands.

3.3. Waveband optimization by using

the MWPLS method

The M-SEPAve and M-SEPþ of the local optimal
model for each N and for each beginning wave-
length are shown in Figs. 4 and 5. The results show
that M-SEPAve and M-SEPþ for N ¼ 430 and for
the beginning wavelength 1424 nm had the best
values, which indicates that these N and beginning
wavelength had the best prediction accuracy and
stability. The beginning wavelength and N of the
global optimal model were 1424 nm and 430, re-
spectively. The waveband was 1424 to 2282 nm in
the long-NIR region. The corresponding prediction
accuracy and stability are shown in Table 2.
Tables 1 and 2 show that the global optimal model
was evidently better than those for long-NIR and
the overall scanning regions. Moreover, the number
of wavelengthsN was reduced signi¯cantly, thereby
decreasing model complexity.

Actually, Refs. 6–8 have con¯rmed that simul-
taneous assessment of various soil properties (such
as organic matter and TN of soil) by visible, NIR or
mid-infrared di®use re°ectance spectroscopy, re-
spectively are feasible. However, their models were
only based on overall regions, and further optimiz-
ation of wavelength is not performed. This current
paper focused on the NIR region for the farmland
soil samples (yellow brown earth) located in Pearl
River Delta of China. First, the PLS model of
overall NIR region was established, and then further
optimization of wavelength was accomplished by
using the improved MWPLS method with the
stability. There is no contradiction between our
results and previous ¯ndings.

Fig. 3. Relationship between average prediction e®ects and
average similarity degree of each division group.

Table 1. Modeling prediction accuracy and stability of PLS models that correspond
to the visible, short-NIR, long-NIR, and overall scanning regions.

Waveband (nm) F M-SEPAve M-SEPStd M-RP;Ave M-RP;Std M-SEPþ

400–780 3 0.126 0.010 0.820 0.0314 0.137
780–1100 6 0.133 0.016 0.797 0.0525 0.150
1100–2498 8 0.115 0.014 0.860 0.0336 0.129
400–2498 10 0.124 0.011 0.843 0.0264 0.135

Selection of stable equivalent wavebands for NIR spectroscopic analysis
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3.4. Model space with equivalence

As previously mentioned, the global optimal wave-
band 1424 to 2282 nm has a minimum M-SEPAve

(0.105 g kg�1) and a minimum M-SEPþ (0.118 g
kg�1); however, statistically speaking, the models
with slightly °uctuating prediction accuracy are
considered equivalent because of the random and
limited modeling samples. Therefore, the optimal

accuracy could °oat upward at an appropriate
range (usually 1%). In this paper, minimum
M-SEPþ °oated upward from 0.118 to 0.119 g kg�1,
which indicates that the models that satisfy the
following inequality can be considered equivalent to
the optimal model with stability:

fðB;N ;F Þj0:118 � M-SEPþðB;N ;F Þ
� 0:119g: ð7Þ

Table 2. Modeling prediction accuracy and stability that correspond to the optimal
MWPLS waveband and to the equivalent optimal waveband.

Waveband (nm) N F M-SEPAve M-SEPStd M-RP;Ave M-RP;Std M-SEPþ

1424–2282 430 11 0.105 0.012 0.883 0.029 0.118
1590–1870 141 6 0.109 0.009 0.863 0.029 0.118

(a) (b)

Fig. 4. M-SEPAve and M-SEPþ of the local optimal model for each N : (a) M-SEPAve and (b) M-SEPþ.

(a) (b)

Fig. 5. M-SEPAve and M-SEPþ of the local optimal model for each beginning wavelength: (a) M-SEPAve and (b) M-SEPþ.
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An equivalent model space that contained 41
wavebands was obtained; all wavebands were
equivalent optimal wavebands, the beginning
wavelength ranged from 1418 to 1590 nm, the end-
ing wavelength ranged from 1870 to 2302 nm, N
ranged from 141 to 443, the wavebands spanned
1418 to 2302 nm and the public range was 1590 to
1870 nm with 141 wavelengths. The public range
was just one of the equivalent optimal wavebands
and had the lowest N ; the corresponding prediction
accuracy and stability are shown in Table 2.
Figure 6 shows the position of 41 equivalent optimal
wavebands.

The equivalent model space provided various
waveband selections and could solve the restrictions
of position and the number of wavelengths in
instrument design. The upward range could be
adjusted correspondingly.

3.5. Model validation

With the PLS models for 1424 to 2282 nm, 1590
to 1870 nm and 1100 to 2498 nm as examples,
three models were validated with the validation
set. Figure 7 shows the relationship between the
predicted and the measured values of TN for 60
validation samples, whereas Table 3 shows the
validation e®ects that correspond to the three
wavebands. The results exhibit the high predic-
tion accuracy of the three models and indicate
that the predicted TN values of the samples
are close to the measured values. However, the
public waveband of 1590 to 1870 nm had the
lowest N , which signi¯cantly reduced method
complexity. Satisfactory prediction e®ects can be
achieved for random validation samples because
stability was considered in the modeling optim-
ization process.

Fig. 6. Position of 41 wavebands in the equivalent model
space.

(a)

(b)

(c)

Fig. 7. Relationship between the predicted values and the
measured values of TN for 60 validation samples: (a) using 1424 to
2282nm; (b)using1590 to1870nm; and(c)using1100 to2498 nm.
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4. Conclusions

The selection of stable wavebands for the NIR
spectroscopic analysis of TN in soil was accom-
plished by using the improved MWPLS method in
terms of stability and equivalence. A new modeling
approach was performed based on randomness,
similarity and stability, which produced an objec-
tive, stable and practical model. The global optimal
waveband and the local optimal wavebands of the
MWPLS method were determined. In addition, a
model space equivalent to the optimal MWPLS
model was proposed. The optimal MWPLS wave-
band was found to be 1424 to 2282 nm. The model
space contained 41 equivalent optimal wavebands;
the public waveband was 1590 to 1870 nm and
contained su±cient TN information. The wave-
bands of 1424 to 2282 nm, 1590 to 1870 nm, and the
long-NIR region 1100 to 2498 nm all achieved sat-
isfactory validation e®ects. However, the method
complexity was substantially reduced because the
public waveband of 1590 to 1870 nm had a mini-
mum number of wavelengths. Stability was con-
sidered in the modeling optimization process.
Therefore, a satisfactory prediction e®ect can be
achieved for random validation samples. Equivalent
wavebands provide valuable guidelines for design-
ing spectroscopic instruments. The proposed
methodological framework and computer algorithm
are universal and could be applied to other ¯elds.
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